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1

Background

To make this monograph as self-contained as possible, this preliminary chap-
ter contains basic characterizations of quasi-Frobenius and pseudo-Frobenius
rings, together with the necessary background material. We assume familiarity
with the basic facts of noncommutative ring theory, and we refer the reader to the
texts by Anderson and Fuller [1] or Lam [131] for the relevant information. How-
ever, we make frequent use of facts about semiperfect, perfect, and semiregular
rings and about Morita equivalence, often without comment. All these results
are derived in the Appendices, again to make the book self-contained.

Throughout this book all rings considered are associative with unity and all
R-modules are unital. We write J = J (R) for the Jacobson radical of R and
Mn(R) for the ring of n×n matrices over R. Right and left modules are denoted
MR and R M respectively, and we write module homomorphisms opposite the
scalars. If M is an R-module, we write Z (M), soc(M) and M∗ = hom R(M, R)
respectively, for the singular submodule, the socle, and the dual of M . The
uniform (Goldie) dimension of a module M will be referred to simply as the
dimension of M and will be denoted dim(M). For a ring R, we write

soc(RR) = Sr , soc(R R) = Sl , Z (RR) = Zr , and Z (R R) = Zl .

The notations N ⊆max M, N ⊆ess M , and N ⊆sm M mean that N is a maximal,
(essential, and small) submodule of M, respectively, and we write N ⊆⊕ M if
N is a direct summand of M. Right annihilators will be denoted as

r(Y ) = rX (Y ) = {x ∈ X | yx = 0 for all y ∈ Y },

with a similar definition of left annihilators, lX (Y ) = l(Y ). Multiplication maps
x �→ ax and x �→ xa will be denoted a· and ·a respectively. If π is a property of
modules, we say that M is a π module if it has the property π and that the ring
R is a right π ring if RR is a π module (with a similar convention on the left).

1
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2 Quasi-Frobenius Rings

1.1. Injective Modules

Injective modules are closely related to essential extensions. If K ⊆ M are
modules, recall that K is called an essential submodule of M (and K ⊆ M is
called an essential extension) if K ∩ X �= 0 for every submodule X �= 0 of
M. This state of affairs is denoted K ⊆ess M. We begin with a lemma, which
will be referred to throughout the book, that collects many basic properties of
essential extensions.

Lemma 1.1. Let M denote a module.

(1) If K ⊆ N ⊆ M then K ⊆ess M if and only if K ⊆ess N and N ⊆ess M.

(2) If K ⊆ess N ⊆ M and K ′ ⊆ess N ′ ⊆ M then K ∩ K ′ ⊆ess N ∩ N ′.
(3) If α : M → N is R-linear and K ⊆ess N , then α−1(K ) ⊆ess M, where

α−1(K ) = {m ∈ M | α(m) ∈ K }.
(4) Let M = ⊕i∈I Mi be a direct sum where Mi ⊆ M for each i, and let

Ki ⊆ Mi for each i. Then ⊕i∈I Ki ⊆ess M if and only if Ki ⊆ess Mi for
each i.

Proof. (1) and (2). These are routine verifications.
(3). Let 0 �= X ⊆ M ; we must show that X ∩ α−1(K ) �= 0. This is clear if

α(X ) = 0 since then X ⊆ α−1(K ). Otherwise, α(X ) ∩ K �= 0 by hypothesis,
say 0 �= α(x) ∈ K , x ∈ X. Then 0 �= x ∈ X ∩ α−1(K ).

(4). Write K = ⊕i∈I Ki , and assume that Ki ⊆ess Mi for each i. Then
K ⊆ess M if and only if m R ∩ K �= 0 for each 0 �= m ∈ M. Since m lies
in a finite direct sum of the Mi , it suffices to prove (4) when I is finite, and
hence (by induction) when |I | = 2. Let π1 : M1 ⊕ M2 → M1 be the projec-
tion with ker (π1) = M2. Then K1 ⊕ M2 = π−1

1 (K1) ⊆ess M1 ⊕ M2 by (3).
Similarly, M1 ⊕ K2 ⊆ess M1 ⊕ M2, and (4) follows from (2) because K1 ⊕
K2 = (K1 ⊕ M2) ∩ (M1 ⊕ K2). �

This book is concerned with injective modules and their generalizations, and
the main properties of these modules are derived in this section. A module
ER is called injective if whenever 0 → N

α→ M is R-monic, every R-linear
map β : N → E factors in the form β = γ ◦ α for some R-linear map

0 → N
α→ M

β↓
γ

↙
E

γ : M → E .These modules admit a characterization that we will use repeatedly
in the following.
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Lemma 1.2. A module E is injective if and only if, whenever K ⊆ M, every
R-linear map β : K → E extends to an R-linear map γ : M → E .

Proof. The condition clearly holds if E is injective. Conversely, if N
α→ M is

R-monic, the map α′ : α(N ) → N is well defined by α′(α(n)) = n for n ∈ N .

Then, given β : N → E , the map β ◦ α′ : α(N ) → E extends to γ : M → E
by hypothesis, and one checks that γ ◦ α = β. �

Corollary 1.3. If E = �i Ei is a direct product of modules, then E is injective
if and only if each Ei is injective.

Proof. Let Ei
σi→ E

π j→ E j be the canonical maps. If E is injective, and if
K ⊆ M and β : K → Ei are given, there exists γ : M → E such that γ =
σi ◦ β on K . Then πi ◦ γ : M → Ei extends β, proving that Ei is injective by
Lemma 1.2. Conversely, if each Ei is injective, let α : K → E , where K ⊆ M.

For each i, there exists γi : M → Ei extending πi ◦ α. If γ : M → E is
defined by γ (m) = 〈γi (m)〉 for each m ∈ M, then γ extends α because x =
〈πi (x)〉 for each x ∈ M. It follows that E is injective by Lemma 1.2. �

Surprisingly, to prove that a module E is injective, it is enough to verify the
condition in Lemma 1.2 when M = R.

Lemma 1.4 (Baer Criterion). A right R-module E is injective if and only if,
whenever T ⊆ R is a right ideal, every map γ : T → E extends to R → E,

that is, γ = c· is multiplication by an element c ∈ E .

Proof. The condition is clearly necessary. To prove sufficiency, let K ⊆ M be
modules and let β : K → E . In this case, let F denote the set of pairs (K ′, β ′)
such that K ⊆ K ′ ⊆ M and β ′ : K ′ → E extends β. By Zorn’s lemma, let
(K

′′
, β

′′
) be a maximal member of F . We must show that K

′′ = M. If not, let
m ∈ M −K

′′
, let T = {r ∈ R | mr ∈ K

′′ } – a right ideal, and define λ : T → E
by λ(r ) = β

′′
(mr ). By hypothesis there exists λ̂ : R → E extending λ, and we

use it to define β̂ : K
′′ +m R → E by β̂(y+mr ) = β

′′
(y)+ λ̂(r ), where y ∈ K

′′

and r ∈ R. This is well defined because y + mr = 0 implies that mr ∈ K
′′

and so λ̂(r ) = λ(r ) = β
′′
(mr ) = β

′′
(−y) = −β

′′
(y). Since β̂ is R-linear and

extends β
′′

this contradicts the maximality of (K
′′
, β

′′
) in F . �

It is a routine matter to show that an (additive) abelian group X is injective
as a Z-module if and only if it is divisible, that is, nX = X for any 0 �= n ∈ Z.

Examples include Q and the Prüfer group Zp∞ for any prime p. Divisible groups



P1: IYP

CB544-01 Nicholson April 11, 2003 13:21 Char Count= 0

4 Quasi-Frobenius Rings

can be used to construct injective modules over any ring. The second part of
the next lemma was discovered by Baer in 1940.

Lemma 1.5. Let R be a ring. Then the following hold:

(1) If Q is a divisible group then ER = homZ(R, Q) is an injective right
R-module.

(2) (Baer) Every module MR embeds in an injective right module.

Proof. (1). If λ ∈ E and a ∈ R, E becomes a right R-module via (λ · a)(r ) =
λ(ar ) for all r ∈ R. Now let γ : T → ER be R-linear, where T is a right ideal
of R. By Lemma 1.4 we must extend γ to RR → ER . Define θ : T → Q by
θ (t) = [γ (t)](1). Then θ is a Z-morphism; so, since Z Q is injective, let θ̂ :
R → Q be a Z-morphism extending θ. Since θ̂ ∈ E, define γ̂ : R → E by
γ̂ (a) = θ̂ · a for all a ∈ R. One verifies that γ̂ is R-linear, and we claim that it
extends γ ; that is, γ̂ (t) = γ (t) for all t ∈ T . If r ∈ R, we have

[γ̂ (t)](r ) = [θ̂ · t](r ) = θ̂ (tr ) = θ (tr ) = [γ (tr )](1) = [γ (t) · r ](1) = [γ (t)](r )

because γ is R-linear and γ (t) ∈ E . Hence γ̂ (t) = γ (t), as required.
(2). Given MR, let ϕ : Z(I ) → M be Z-epic for some set I, so that Z M ∼=

Z(I )/K ⊆ QI /K , where K = ker (ϕ). Write Q = QI /K and note that Q is
divisible. Since MR

∼= hom(RR, MR) via m �→ m·, we get

MR
∼= hom R(RR, MR) ⊆ homZ(R, M) ↪→ homZ(R, Q).

Since ER = homZ(R, Q) is injective by (1), this proves (2). �

Corollary 1.6. A module E is injective if and only if every monomorphism
σ : E → M splits, that is, σ (E) ⊆⊕ M.

Proof. If σ : E → M is monic there exists γ : M → E such that γ ◦ σ = 1E .

Then M = σ (E) ⊕ ker (γ ). The converse is clear from Lemma 1.5 because
direct summands of injective modules are injective. �

Before proceeding, we need another basic property of essential extensions.
If K is a submodule of a module M, it is a routine application of Zorn’s lemma
to see that there exist submodules C of M maximal with respect to K ∩ C = 0.

Such a submodule C is called a complement1 of K in M. Thus K ⊆ess M if
and only if 0 is a complement of K .

1 It is sometimes called an intersection complement, or relative complement.
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Lemma 1.7 (Essential Lemma). Let K ⊆ M be modules. If C is any comple-
ment of K in M then the following hold:

(1) K ⊕ C ⊆ess M .
(2) (K ⊕ C)/C ⊆ess M/C.

Proof. (1). Let X be a nonzero submodule of M ; we must show that X ∩
(K ⊕ C) �= 0. This is clear if X ⊆ C. Otherwise the maximality of C shows
that K ∩ (X + C) �= 0, say 0 �= k = x + c with the obvious notation. Hence
x ∈ X ∩ (K ⊕ C), and x �= 0 because K ∩ C = 0.

(2). Let Y/C ∩ (K ⊕ C)/C = 0. If Y �= C then Y ∩ K �= 0 by the choice of
C, say 0 �= a ∈ Y ∩ K . Then a + C ∈ Y/C ∩ (K ⊕ C)/C = 0 so a ∈ C. But
then 0 �= a ∈ C ∩ K = 0, which is a contradiction. �

Given any module M, an R-monomorphism M
σ→ E is called an injective

hull (injective envelope) of M if E is injective and σ (M) ⊆ess E . The following
result is a famous theorem that traces back to Baer, to Eckmann and Schopf,
and to Shoda.

Theorem 1.8 (Baer/Eckmann–Schopf/Shoda). Let MR be a module.

(1) M has an injective hull.
(2) If M

σ1→ E1 and M
σ2→ E2 are two injective hulls there exists an isomor-

phism τ : E1 → E2 such that σ2 = τ ◦ σ1.

Proof. (1). By Lemma 1.5 let M ⊆ Q R where Q R is injective, and, by Zorn’s
lemma, let E be maximal such that M ⊆ess E ⊆ Q. Then let C ⊆ Q be maxi-
mal such that E ∩C = 0; it suffices to show that E ⊕C = Q (so E is injective).
By Lemma 1.7 we have E ∼= (E ⊕ C)/C ⊆ess Q/C. Define σ : (E ⊕ C)/
C → Q by σ (x + C) = x if x ∈ E . Since Q is injective, σ extends to
σ̂ : Q/C → Q. Then σ̂ is monic because ker (σ̂ ) ∩ (E ⊕ C)/C = 0, and so
im(σ ) = σ̂ ((E ⊕ C)/C) ⊆ess σ̂ (Q/C). Since M ⊆ess E = im(σ ) it follows
that E ⊆ess σ̂ (Q/C), and so E = σ̂ (Q/C) by the maximality of E . But then
σ̂ (Q/C) = E = σ̂ ((E ⊕ C)/C) and we conclude that Q = E ⊕ C because σ̂

is monic. This is what we wanted.
(2). The given map τ exists because E2 injective. Moreover, τ is monic be-

cause ker (τ ) ∩ σ1(M) = 0 (since σ2 is monic) and σ1(M) ⊆ess E1. Hence
τ (E1) ⊆⊕ E2 by Corollary 1.6. But τ (E1) ⊆ess E2 because σ2(M) =
τσ1(M) ⊆ τ (E1) and σ2(M) ⊆ess E2 by hypothesis. It follows that τ is onto
and so is an isomorphism. �
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Hence we are entitled to speak of the injective hull of a module M and to denote
it by E(M). We will usually assume that M ⊆ E(M); so, for example, we have
E(Z) = Q and E(Zpn ) = Zp∞ for any prime p and n ≥ 2. The assumption that
M ⊆ E(M) is justified by the following result.

Lemma 1.9. Let σ : M → E(M) be an injective hull of the module M. If
M ⊆ G, where G is any injective module, there exists a copy E ∼= E(M) in-
side G such that M ⊆ess E ⊆⊕ G.

Proof. As G is injective, there exists τ : E(M) → G such that m = τσ (m)
for every m ∈ M. Since ker (τ ) ∩ σ (M) = 0 it follows that τ is monic, and we
are done by Corollary 1.6 with E = τ [E(M)]. �

Lemma 1.9 will be used frequently in the following, usually without com-
ment. In particular, let M = ⊕n

i=1 Mi be a direct sum of modules, and let
M ⊆ E(M). By Lemma 1.9 we can choose a copy of E(Mi ) such that
Mi ⊆ess E(Mi ) ⊆ E(M) for each i. One verifies that E(M1) ∩ E(M2) = 0, so
(by Lemma 1.1) M1 ⊕ M2 ⊆ess E(M1) ⊕ E(M2). Continuing inductively, we
conclude that �n

i=1 E(Mi ) is direct and that M = ⊕n
i=1 Mi ⊆ess ⊕n

i=1 E(Mi ).
Since ⊕n

i=1 E(Mi ) is injective (Corollary 1.3) we have proved the following:

Proposition 1.10. If M = ⊕n
i=1 Mi is a finite direct sum of modules then

E(⊕n
i=1 Mi ) = ⊕n

i=1 E(Mi ).

1.2. Relative Injectivity

Let M and G denote right R-modules. We say that G is M-injective if, for any
submodule X ⊆ M , every R-linear map β : X → G can be extended to an R-
linear map β̂ : M → G, equivalently (see the proof of Lemma 1.2) if, for every

X ↪→ M

β↓
β̂

↙
G

monomorphism σ : X → M there exists λ : M → G such that β = λ◦σ. Thus
G is injective if and only if it is M-injective for every module M, equivalently
(by the Baer criterion) if G is R-injective. The proof of Corollary 1.3 gives

Lemma 1.11. Let G = �i∈I Gi and M be modules. Then G is M-injective if
and only if Gi is M-injective for each i ∈ I.
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Lemma 1.12. If G is M-injective and N ⊆ M then G is both N -injective and
(M/N )-injective.

Proof. Given X
β→ G, where X ⊆ N , extend β to β̂ : M → G by hypothesis.

Then the restriction β̂ |N : N → G extends β, so G is N -injective. Now let
α : X/N → G, N ⊆ X ⊆ M, and let π : X → X/N be the coset map. Then
α ◦ π : X → G extends to λ : M → G by hypothesis. Hence α̂ : M/N → G
is well defined by α̂(m + N ) = λ(m), and α̂ extends α. This shows that G is
(M/N )-injective. �

Note that if G is both N - and (M/N )-injective it does not follow that G is
M-injective. Indeed, there is a monomorphism Zp

σ→ Zp2 of abelian groups,
given by σ (n + pZ) = pn + p2Z for all n ∈ Z. Let G = Zp and N = im(σ ).
Then G is both N - and (Zp2/N )-injective (because N and Zp2/N are simple),
but G is not Zp2 -injective because any map λ : Zp2 → Zp satisfies λ(N ) = 0.

However, we do have

Lemma 1.13 (Azumaya’s Lemma). If G and M = M1 ⊕ · · · ⊕ Mn are mod-
ules, then G is M-injective if and only if G is Mi -injective for each i =
1, 2, . . . , n.

Proof. If G is M-injective, then G is Mi -injective for each i by Lemma 1.12.
Conversely, if G is Mi -injective for each i, let β : X → G be R-linear, where
X ⊆ M. As in the proof of Lemma 1.4, let (C, β∗) be maximal such that
X ⊆ C ⊆ M and β∗ : C → G extends β. We show C = M by proving that
Mi ⊆ C for each i. By hypothesis there exists αi : Mi → G such that αi = β∗

on Mi ∩ C. Construct βi : Mi + C → G by βi (mi + c) = αi (mi ) + β∗(c) for
all mi ∈ Mi and c ∈ C. Then βi is well defined because αi = β∗ on Mi ∩ C,

and βi extends β because X ⊆ C and β∗ extends β. Hence Mi + C = C by the
maximality of (C, β∗), so Mi ⊆ C, as required. �

It is not surprising that there is a characterization of when G is M-injective
in terms of the injective hulls E(G) and E(M).

Lemma 1.14. A module G is M-injective if and only if λ(M) ⊆ G for all
R-linear maps λ : E(M) → E(G).

Proof. If the condition holds, let β : X → G be R-linear, where X ⊆ M. Since
E(G) is injective there exists β̂ : E(M) → E(G) extending β. But β̂(M) ⊆ G
by hypothesis, so the restriction β̂ |M : M → G extends β.
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Conversely, assume that G is M-injective, and let λ : E(M) → E(G) be
R-linear. We must show that λ(M) ⊆ G. If X = {x ∈ M | λ(x) ∈ G} then the
restriction λ|X : X → G extends to µ : M → G. Hence it suffices to show
that (λ − µ)(M) = 0. Since G ⊆ess E(G), it is enough to show that G ∩
(λ − µ)(M) = 0. But if g = (λ − µ)(m), where g ∈ G and m ∈ M, then
λ(m) = µ(m) + g ∈ G, so m ∈ X. This means that λ(m) = µ(m) by the
definition of µ. Hence g = λ(m) − µ(m) = 0, as required. �

A module M is called quasi-injective if it is M-injective, that is, if every map
β : X → M, where X is a submodule of M, extends to an endomorphism of M.

Clearly every injective or semisimple module is quasi-injective, but the converse
is false (for example, Z4 is quasi-injective as a Z-module, as we shall see).

Lemma 1.14 leads to an important characterization of quasi-injective mod-
ules. We say that a submodule K ⊆ M is fully invariant in M if λ(K ) ⊆ K for
every λ ∈ end(M). Then taking G = M in Lemma 1.14 gives immediately

Lemma 1.15 (Johnson–Wong Lemma). A module is quasi-injective if and
only if M is fully invariant in its injective hull E(M).

Thus, for example, Zpn is quasi-injective as a Z-module for any prime p because
it is fully invariant in its injective hull Zp∞ .

Corollary 1.16. Let M be a quasi-injective module. If E(M) = ⊕i∈I Ki , then
M = ⊕i∈I (M ∩ Ki ).

Proof. Let m = �n
i=1ki ∈ M , where each ki ∈ Ki . If πi : E(M) → E(M) is

the projection onto Ki , then ki = πi (m) ∈ πi (M) ⊆ M by Lemma 1.15, so
ki ∈ M ∩ Ki . Hence M ⊆ ⊕i∈I (M ∩ Ki ); the other inclusion is clear. �

If p is a prime, the Z-module Q ⊕ Zp is not quasi-injective even though
Q is injective and Zp is simple. (The coset map Z → Zp does not extend to
Q ⊕ Zp → Zp because there is no nonzero map Q → Zp.) Hence the direct
sum of two quasi-injective modules need not be quasi-injective. However, we
do have the following lemma:

Lemma 1.17. If M is quasi-injective so also is every direct summand N .

Proof. If M = N ⊕ N ′ and β : X → N is R-linear, where X ⊆ N , then β

extends to β̂ : M → M by hypothesis. If π : M → N is the projection with
kernel N ′, then λ = (π ◦ β̂)|N is in end(N ) and extends β. �
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The next result uses Lemma 1.15 to identify when a finite direct sum of
quasi-injective modules is again of the same type.

Proposition 1.18. Let M1, . . . , Mn be modules and write Ei = E(Mi ) ⊇ Mi

for each i. The following are equivalent:

(1) M1 ⊕ · · · ⊕ Mn is quasi-injective.
(2) λ(Mi ) ⊆ M j for all R-linear maps λ : Ei → E j .

Proof. Let M j
σ j→ ⊕k Mk

πi→ Mi denote the canonical maps, and write E =
E(⊕k Mk) = ⊕k Ek .

(1)⇒(2). Given (1) and λ : Ei → E j , let mi ∈ Mi . We have π j ◦ σ j = 1E j

for each j, so λ(mi ) = (π jσ jλπiσi )(mi ) = π j (σ jλπi )(σi mi ) ∈ M j because
(σ jλπi )(⊕k Mk) ⊆ ⊕k Mk by (1) and Lemma 1.15.

(2)⇒(1). Given λ : ⊕k Ek → ⊕k Ek, we must show (by Lemma 1.15) that
λ(⊕k Mk) ⊆ ⊕k Mk . Let m̄ = m1 + · · · + mn ∈ ⊕k Mk . Since �kσkπk = 1E ,

we compute

π jλ(m̄) = π jλ(�kσkπkm̄) = �k(π jλσk)(πkm̄) = �k(π jλσk)(mk) ∈ ⊕k Mk

because (π jλσk)(Mk) ⊆ M j for all j and k by (2). �

Thus, for example, Zn is quasi-injective as a Z-module for each n ∈ Z. In
fact, Zn = Zp

n1
1

⊕ · · · ⊕Zp
nk
k

for distinct primes pi , each Zp
ni
i

is quasi-injective,
and homZ(Zp∞ , Zq∞ ) = 0 if p and q are distinct primes.

Corollary 1.19. A module M is quasi-injective if and only if Mn is quasi-
injective.

1.3. Continuous Modules

In his work on continuous rings, Utumi identified three conditions on a ring
that are satisfied if the ring is self-injective. The analogs of these conditions for
a module M are as follows:

(1) M satisfies the C1-condition if every submodule of M is essential in a direct
summand of M.2 (Note that we regard the zero submodule as essential in
itself.)

(2) M satisfies the C2-condition if every submodule that is isomorphic to a
direct summand of M is itself a direct summand.

2 This condition is also referred to as the CS-condition because it is equivalent to the requirement
that every complement submodule is a direct summand (complement submodules are also called
closed submodules). We return to this topic in the following section.
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(3) M satisfies the C3-condition if, whenever N and K are submodules of M
with N ⊆⊕ M, K ⊆⊕ M , and N ∩ K = 0, then N ⊕ K ⊆⊕ M.

A ring R is called a right C1 ring (respectively C2 ring, C3 ring) if the module
RR has the corresponding property.

If M is an indecomposable module then M is a C3 module; M is a C1 module
if and only if it is uniform (that is X ∩ Y �= 0 for all submodules X �= 0 and
Y �= 0) and M is a C2 module if and only if monomorphisms in end(M) are
isomorphisms. The Z-modules Z2 and Z8 each satisfy the C1-, C2- and C3-
conditions, but their direct sum N = Z2 ⊕ Z8 is not a C1 module because,
writing S = Z2 ⊕ 0 and K = Z(1 + 2Z, 2 + 8Z), we see that K is contained in
only two direct summands N and S ⊕ K and is essential in neither. Moreover,
N is not a C2 module because the non-summand 0 ⊕ Z(4 + 8Z) is isomorphic
to the summand Z2 ⊕ 0. Hence a direct sum of C1 modules, or C2 modules,
may not inherit the same property.

As an abelian group, Z satisfies both the C1- and C3-conditions, but it is not
a C2 module. However, if F is a field let R = [ F V

0 F

]
, where V = F ⊕ F. If

e = [ 1 0
0 0

]
then eR = [ F V

0 0

]
is indecomposable (in fact eRe ∼= F) and is a C2

module because monomorphisms are epic, but it is not a C1 module because it
is not uniform.

Example 1.20. Let R = [ F F
0 F

]
, where F is a field. Then R is a right and left

C1 ring, but neither a left nor right C2 ring.

Proof. We have J = [ 0 F
0 0

] ∼= e12 R (where ei j is the matrix unit), so R is not
right C2 because JR is not a direct summand of RR . Similarly, R is not left C2.
To see that R is right C1, let T �= 0 be a right ideal. If T � Sr = [ 0 F

0 F

]
then

T = e11 R or T = R, so T is a summand. If T = Sr then T ⊆ess RR because R
is right artinian. So we may assume that dim F (T ) = 1, say T = x R, x ∈ Sr .

If x2 = x �= 0 we are done. Otherwise x ∈ J, so T = J and one verifies that
T ⊆ess e11 R = [ F F

0 0

]
. Hence R is right C1; similarly R is right C2. �

Lemma 1.21. The C2-condition implies the C3-condition.

Proof. Let N ⊆⊕ M and K ⊆⊕ M satisfy N ∩ K = 0; we must show that
N ⊕ K ⊆⊕ M. Write M = N ⊕ N ′, and let π : M → N ′ be the projection with
ker (π ) = N . If k ∈ K and k = n + n′, n ∈ N , n′ ∈ N ′, then π (k) = n′ and
it follows that N ⊕ K = N ⊕ π (K ). Hence we show that N ⊕ π (K ) ⊆⊕ M.

Since π|K : K → M is monic we have π (K ) ⊆⊕ M by the C2-condition.
Since π (K ) ⊆ N ′, it follows that N ′ = π (K ) ⊕ W for some submodule W and
hence that M = N ⊕ π (K ) ⊕ W. Thus M satisfies the C3-condition. �
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A module is called continuous if it satisfies both the C1- and C2-conditions,
and a module is called quasi-continuous if it satisfies the C1- and C3-conditions,
and R is called a right continuous ring (right quasi-continuous ring) if RR has the
corresponding property. As the terminology suggests, every continuous module
is quasi-continuous (by Lemma 1.21). Clearly every injective or semisimple
module is continuous; in fact:

Proposition 1.22. Every quasi-injective module is continuous.

Proof. Let M be quasi-injective. If N ⊆ M then E(M) contains a copy of
E(N ) = E, and E(M) = E ⊕G for some submodule G because E is injective.
But then Corollary 1.16 shows that M = (M ∩ E) ⊕ (M ∩ G). Moreover,
N ⊆ess E , so N ⊆ess (M ∩ E). This shows that M has the C1-property.

Now suppose that N ∼= P ⊆⊕ M. Since M is M-injective, it follows from
Lemma 1.11 that P is also M-injective and hence that N is M-injective. But
then the identity map 1N : N → N extends to λ : M → N , and it follows that
M = N ⊕ ker (λ). This proves C2. �

The following lemma is a useful connection between essential submodules
and singular modules.

Lemma 1.23. If K ⊆ess M are modules then M/K is singular, that is,
Z (M/K ) = M/K .

Proof. If K ⊆ess M and m ∈ M, we must show that rR(m + K ) ⊆ess RR,

that is, bR ∩ rR(m + K ) �= 0 for every 0 �= b ∈ R. This is clear if mb = 0.

Otherwise, we have mbR ∩ K �= 0 by hypothesis, say 0 �= mba ∈ K , a ∈ R.

But then 0 �= ba ∈ bR ∩ rR(m + K ), as required. �

We can now prove two important results about endomorphism rings. A ring
R is called semiregular3 if R/J is (von Neumann) regular and idempotents lift
modulo J, equivalently (by Lemma B.40 in Appendix B) if, for each a ∈ R
there exists e2 = e ∈ a R such that (1 − e)a ∈ J. We are going to prove
that the endomorphism ring S of a continuous module MR is semiregular and
J (S) = {α ∈ S | ker (α) ⊆ess M}. We will need the following lemma.

Lemma 1.24. Given MR, write S = end(M) and S̄ = S/J (S), and assume S
is semiregular and J (S) = {α ∈ S | ker (α) ⊆ess M}.
(1) If π2 = π and τ 2 = τ in S satisfy π̄ S̄ ∩ τ̄ S̄ = 0 then π M ∩ τ M = 0.

(2) If M satisfies the C3-condition and �i∈I π̄i S̄ is direct in S̄, where π2
i =

πi ∈ S for each i, then �i∈I πi M is direct in M.

3 These rings are also called F-semiperfect in the literature.
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(3) If M is quasi-continuous and �i∈I πi M is direct in M , where π2
i = πi ∈ S

for each i, then �i∈I π̄i S̄ is direct in S̄.

Proof. (1). We begin with a simplifying adjustment.

Claim 1. We may assume that τ̄ π̄ = 0.

Proof. As S̄ is regular, let π̄ S̄ ⊕ τ̄ S̄ ⊕ T = S̄, with T a right ideal of S̄. Let
η̄2 = η̄ be such that τ̄ S̄ = η̄S̄ and π̄ S̄ ⊕ T = (1 − η̄)S̄. By hypothesis, we may
assume that η2 = η in S. Note that η̄π̄ = 0. Then γ = τ + τη(1 − τ ) satisfies
γ 2 = γ, γ τ = τ , and τγ = γ, so τ M = γ M and τ̄ S̄ = γ̄ S̄. Moreover, γ̄ = η̄

because τ̄ η̄ = η̄ and η̄τ̄ = τ̄ . Hence γ̄ π̄ = η̄π̄ = 0, so replacing τ by γ proves
Claim 1.

By Claim 1 we have τπ ∈ J (S), so writing K = ker (τπ ), we have K ⊆ess

M by hypothesis. It follows that π K ⊆ess π M (if 0 �= X ⊆ π M then πx = x
for each x ∈ X, so 0 �= X ∩ K ⊆ X ∩ π K ). However, τπ K = 0, so
π K ⊆ ker (τ ), whence π K ∩τ M = 0. This in turn implies that π M ∩τ M = 0
because π K ⊆ess π M.

(2). It is enough to show that �i∈Fπi M is direct for any finite subset F ⊆ I.
Write F = {1, . . . , n} and proceed by induction on n. If n = 1 there is nothing
to prove, and if n = 2 then (2) follows from (1). Assume inductively that
π1 M + · · · + πn M is a direct sum, n ≥ 1. Then the C3-condition implies that
π1 M ⊕ · · · ⊕ πn M = π M for some π2 = π ∈ S.

Claim 2. π S = π1S + · · · + πn S.

Proof. We have ππi = πi for each i (because πi M ⊆ π M), so �n
i=1πi S ⊆ π S.

For each i = 1, . . . , n, let ρi : π M → πi M be the projection, so that πρi = ρi

for each i and π = �n
i=1ρiπ = �n

i=1τi , where we define τi = ρiπ for each i.
Then πτi = τi for each i, and so π S = �n

i=1τi S = �n
i=1πiτi S ⊆ �n

i=1πi S.

This proves Claim 2.

By Claim 2 we have π̄ S̄ = π̄1 S̄ ⊕ · · · ⊕ π̄n S̄, so π̄ S̄ ∩ π̄n+1 S̄ = 0.

But then (1) implies that π M ∩ πn+1 M = 0. Since π1 M ⊕ · · · ⊕ πn M =
π M, this shows that π1 M ⊕ · · · ⊕ πn M ⊕ πn+1 M is a direct sum, as
required.

(3). For each i ∈ I let Ci be a closure of ⊕ j �=iπ j M, so that ⊕ j �=iπ j M ⊆ess Ci .

It follows that πi M ∩ Ci = 0. But Ci is a direct summand of M by the C1-
condition, so the C3-condition implies that M = πi M ⊕ Ci ⊕ Ni for some
submodule Ni ⊆ M. So, for each i ∈ I, let τ 2

i = τi ∈ S satisfy τi M = πi M
and ker (τi ) = Ci ⊕ Ni . Then πiτi = τi and τiπi = πi , and so τi S = πi S.

Furthermore, τiπ j = 0 for all j �= i because π j M ⊆ Ci ⊆ ker (τi ). But then
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τiτ j = τi (π jτ j ) = (τiπ j )τ j = 0 whenever i �= j, so the τi are orthogonal.
Thus �i π̄i S̄ = �i τ̄i S̄ is direct in S̄ because the τ̄i are also orthogonal. �

We can now prove an important result about the endomorphism ring of a
continuous (or quasi-injective) module.

Theorem 1.25. Let MR be a continuous module with S = end(MR). Then:

(1) S is semiregular and J (S) = {α ∈ M | ker (α) ⊆ess M}.
(2) S/J (S) is right continuous.
(3) If M is actually quasi-injective, S/J (S) is right self-injective.

Proof. (1). Write � = {α ∈ S | ker (α) ⊆ess M}. It is a routine exercise to
show that � is a left ideal of S; it is also a right ideal using (3) of Lemma 1.1.
If α ∈ � the fact that ker (α) ∩ ker (1 − α) = 0 means that ker (1 − α) = 0.

Hence (1 − α)M ∼= M , so, by C2, (1 − α)M ⊆⊕ M. But ker (α) ⊆ (1 − α)M ,
so it follows that (1 − α)M = M. Hence 1 − α is a unit in S, and it follows
that � ⊆ J (S).

Let α ∈ S and (by C1) let ker (α) ⊆ess P where P ⊕ Q = M. Then αQ ∼= Q,
so (by C2) let αQ ⊕ W = M. Then β ∈ S is well defined by β(αq + w) = q,

q ∈ Q, w ∈ W. If π2 = π ∈ S satisfies π M = Q, then βαπ = π. Define
τ = απβ. Then τ 2 = τ ∈ αS and (1 − τ )α = α − απβα is in � because
ker (α − απβα) ⊇ ker (α) ⊕ Q and ker (α) ⊕ Q ⊆ess P ⊕ Q = M (by Lemma
1.1). It follows that S/� is regular and hence that J (S) ⊆ �. This proves that
J (S) = � and so S is semiregular by Lemma B.40. This proves (1).

In preparation for the proof of (2) and (3), let T be a right ideal of S̄ and, by
Zorn’s lemma, choose a family {π̄i S̄ | i ∈ I } of nonzero, principal right ideals
of S̄ maximal such that π̄i S̄ ⊆ T for each i and �i π̄i S̄ is direct. Since S̄ is
regular, we may assume that each π̄i is an idempotent; since idempotents lift
modulo J (S) we may further assume that π2

i = πi in S. Then �iπi M is direct
by Lemma 1.24.

(2). Let ⊕iπi M ⊆ess π M , where π2 = π ∈ S (by C1). Since πi M ⊆ π M
for each i, we have π̄i S̄ ⊆ π̄ S̄, so ⊕i π̄i S̄ ⊆ π̄ S̄.

Claim. ⊕i π̄i S̄ ⊆ess π̄ S̄.

Proof. Suppose that η̄S̄ ∩ (⊕i π̄i S̄) = 0, where η̄ ∈ π̄ S̄. As before, we may
assume that η2 = η in S. Thus ηM ∩ (⊕iπi M) = 0 by Lemma 1.24. Since
π̄ η̄ = η̄, we have (πη − η) ∈ J (S) = � and so (πη − η)K = 0 for some
K ⊆ess M. But this implies that ηK ⊆ π M, and it follows that ηK = 0 because
(⊕iπi M) ⊆ess π M. Hence η ∈ J (S), so η̄ = 0. This proves the Claim.


